气候变化仍然是一个迫在眉睫的问题,目前影响社会大。重要的是,我们作为一个社会,包括计算机愿景(CV)社区采取措施限制对环境的影响。在本文中,我们(a)分析了CV方法递减递减的效果,(b)提出了一种\ entyit {'nofade''}:一种基于新的基于熵的度量来量化模型 - 数据集 - 复杂性关系。我们表明一些简历的任务正在达到饱和度,而其他CV任务几乎完全饱和。在这种光中,Nofade允许CV社区在类似的基础上比较模型和数据集,建立不良平台。
translated by 谷歌翻译
外科模拟器不仅允许规划和培训复杂的程序,而且还提供了为算法开发产生结构化数据的能力,这可以应用于图像引导的计算机辅助干预措施。虽然在外科医生或数据生成引擎的发展培训平台上,但我们知识的这两个功能尚未一起提供。我们展示了我们的开发成本效益和协同框架,命名为异步多体框架加(AMBF +),它与练习其外科技能的用户同时生成下游算法开发的数据。 AMBF +在虚拟现实(VR)设备上提供立体显示器,并触觉外科仿真的触觉反馈。它还可以生成不同的数据,例如对象姿势和分段图。 AMBF +采用柔性插件设置设计,可允许仿真仿真不同外科手术。我们将AMBF +的一个用例显示为虚拟钻探模拟器,用于横向颅底手术,用户可以使用虚拟手术钻积极地修改患者解剖结构。我们进一步演示如何生成的数据可用于验证和培训下游计算机视觉算法
translated by 谷歌翻译
图形离群值检测是一项具有许多应用程序的新兴但至关重要的机器学习任务。尽管近年来算法扩散,但缺乏标准和统一的绩效评估设置限制了它们在现实世界应用中的进步和使用。为了利用差距,我们(据我们所知)(据我们所知)第一个全面的无监督节点离群值检测基准为unod,并带有以下亮点:(1)评估骨架从经典矩阵分解到最新图形神经的骨架的14个方法网络; (2)在现实世界数据集上使用不同类型的注射异常值和自然异常值对方法性能进行基准测试; (3)通过在不同尺度的合成图上使用运行时和GPU存储器使用算法的效率和可扩展性。基于广泛的实验结果的分析,我们讨论了当前渠道方法的利弊,并指出了多个关键和有希望的未来研究方向。
translated by 谷歌翻译
生物视觉系统的神经基础在实验上研究很具有挑战性,特别是因为相对于视觉输入,神经元活性变得越来越非线性。人工神经网络(ANN)可以为改善我们对这一复杂系统的理解提供各种目标,不仅充当硅中新假设产生的感觉皮层的预测数字双胞胎,而且还融合了生物启发的建筑主题,以逐步桥接桥梁生物和机器视觉之间的差距。该鼠标最近已成为研究视觉信息处理的流行模型系统,但是尚未确定识别鼠标视觉系统最新模型的标准化大规模基准。为了填补这一空白,我们提出了感官基准竞赛。我们从小鼠初级视觉皮层中收集了一个大规模数据集,其中包含七个小鼠的28,000多个神经元的反应,并通过数千个自然图像刺激,以及同时的行为测量,包括跑步速度,瞳孔扩张和眼动。基准挑战将基于固定测试集​​中神经元响应的预测性能对模型进行对模型,其中包括两个模型输入的轨道,仅限于刺激(感觉到)或刺激加行为(感觉符号+)。我们提供一个起始套件,以降低进入障碍的障碍,包括教程,预训练的基线模型以及带有一条线命令以进行数据加载和提交的API。我们希望将其视为定期挑战和数据发布的起点,也是衡量鼠标视觉系统及其他大规模神经系统识别模型中进度的标准工具。
translated by 谷歌翻译
语言模型既展示了定量的改进,又展示了新的定性功能,随着规模的增加。尽管它们具有潜在的变革性影响,但这些新能力的特征却很差。为了为未来的研究提供信息,为破坏性的新模型能力做准备,并改善社会有害的效果,至关重要的是,我们必须了解目前和近乎未来的能力和语言模型的局限性。为了应对这一挑战,我们介绍了超越模仿游戏基准(Big Bench)。 Big Bench目前由204个任务组成,由132家机构的442位作者贡献。任务主题是多样的,从语言学,儿童发展,数学,常识性推理,生物学,物理学,社会偏见,软件开发等等。 Big-Bench专注于被认为超出当前语言模型的功能的任务。我们评估了OpenAI的GPT型号,Google内部密集变压器体系结构和大型基础上的开关稀疏变压器的行为,跨越了数百万到数十亿个参数。此外,一个人类专家评估者团队执行了所有任务,以提供强大的基准。研究结果包括:模型性能和校准都随规模改善,但绝对的术语(以及与评估者的性能相比);在模型类中的性能非常相似,尽管带有稀疏性。逐渐和预测的任务通常涉及大量知识或记忆成分,而在临界规模上表现出“突破性”行为的任务通常涉及多个步骤或组成部分或脆性指标;社交偏见通常会随着含糊不清的环境而随着规模而增加,但这可以通过提示来改善。
translated by 谷歌翻译
准确的实时流量预测对于智能运输系统(ITS)至关重要,它是各种智能移动应用程序的基石。尽管该研究领域以深度学习为主,但最近的研究表明,开发新模型结构的准确性提高正变得边缘。取而代之的是,我们设想可以通过在具有不同数据分布和网络拓扑的城市之间转移“与预测相关的知识”来实现改进。为此,本文旨在提出一个新型的可转移流量预测框架:域对抗空间 - 颞网(DASTNET)。 Dastnet已在多个源网络上进行了预训练,并通过目标网络的流量数据进行了微调。具体而言,我们利用图表表示学习和对抗域的适应技术来学习域不变的节点嵌入,这些嵌入式嵌入将进一步合并以建模时间流量数据。据我们所知,我们是第一个使用对抗性多域改编来解决网络范围的流量预测问题的人。 Dastnet始终优于三个基准数据集上的所有最新基线方法。训练有素的dastnet应用于香港的新交通探测器,并且在可用的探测器可用时(一天之内)可以立即(在一天之内)提供准确的交通预测。总体而言,这项研究提出了一种增强交通预测方法的替代方法,并为缺乏历史流量数据的城市提供了实际含义。
translated by 谷歌翻译
科学合作受益于分布式来源的协作学习,但在数据敏感时仍然难以实现。近年来,已经广泛研究了隐私保护技术,以分析不同机构的分布数据,同时保护敏感信息。大多数现有的隐私保存技术旨在抵抗半冬季对手,并需要进行密集的计算来执行数据分析。对于可能偏离安全协议的恶意对手的存在,安全的协作学习非常困难。另一个挑战是通过隐私保护保持较高的计算效率。在本文中,矩阵加密应用于加密数据,以使安全方案反对恶意对手,包括选择的明文攻击,已知的明文攻击和勾结攻击。加密方案还实现了当地的差异隐私。此外,研究了交叉验证以防止过度拟合,而无需额外的沟通成本。现实世界数据集的经验实验表明,与现有针对恶意对手和半honest模型的现有技术相比,所提出的方案在计算上是有效的。
translated by 谷歌翻译
计算机愿景领域正在快速发展,特别是在神经结构设计的新方法的背景下。这些模型有助于(1)气候危机 - 增加二氧化碳排放量和(2)隐私危机 - 数据泄漏问题。为了解决经常忽视的影响计算机愿景(CV)社区对这些危机,我们概述了一个新颖的道德框架,\ Textit {P4ai}:AI的原则,是AI内伦理困境的增强原则看法。然后,我们建议使用P4AI向社区制定具体的建议,以减轻气候和隐私危机。
translated by 谷歌翻译
我们研究了通过机器学习从欧几里得相关函数重建光谱函数的逆问题。我们提出了一个新型的神经网络SVAE,该网络基于变异自动编码器(VAE),可以自然应用于逆问题。 SVAE的突出特征是,作为损失函数中的先验信息包含了频谱函数的地面真实值的香农 - jaynes熵项,要最小化。我们使用高斯混合模型产生的一般光谱函数训练网络。作为一项测试,我们使用由一个由一个共振峰制成的四种不同类型的物理动机函数产生的相关器,连续项和使用非相关性QCD获得的扰动光谱函数。从模拟数据测试我们发现,在大多数情况下,SVAE与重建光谱函数质量的最大熵方法(MEM)相媲美,甚至在光谱函数具有尖峰的情况下且数据数量不足的情况下,SVAE与MEM的表现相当。相关器中的点。通过在淬火晶格QCD中获得的charmonium的时间相关函数应用于$ 128^3 \ times96 $ lattices和$ 128^3 \ times48 $ lattices,我们找到了$ 128^3 \ times96 $ lattices in 0.75 $ t_c $ on 0.75 $ t_c $ on 0.75 $ t_c $,我们发现,我们找到了,我们找到了,我们找到从SVAE和MEM提取的$ \ eta_c $的共振峰值对晶格模拟中采用的时间方向($ n_ \ tau $)的点数具有很大的依赖为了解决$ \ eta_c $的命运为1.5 $ t_c $。
translated by 谷歌翻译
我们提出ACPROP(异步 - 居中 - PROP),一个适应优化器,它结合了第二次动量和异步更新的居中(例如,用于$ T $ -Th更新,分母使用信息最多为步骤$ T-1 $,而Dumerator使用梯度$ t-the step)。 ACPROP具有强大的理论特性和经验性能。用reddi等人的例子。 (2018),我们表明异步优化器(例如Adashift,ACProp)的收敛条件较弱,而不是同步优化器(例如ADAM,RMSPROP,Adabelief);在异步优化器中,我们表明,第二次势头的中心进一步削弱了收敛条件。我们展示了随机非凸面的$ O(\ FRAC {1} {\ SQRT {})$的收敛速度,它与ORACLE率和优于$ O(\ FRAC {logt}相匹配{\ sqrt {t}})$ rmsprop和adam的$率。我们在广泛的实证研究中验证了ACPROP:ACPRAC在使用CNN的图像分类中表现出SGD和其他自适应优化器,并且在各种GAN模型,加固学习和变压器的培训中优于良好调整的自适应优化器。总而言之,ACPROP具有良好的理论特性,包括弱收敛条件和最佳收敛速度,以及强的经验性能,包括SGD等良好普遍性,如亚当等训练稳定性。我们在https://github.com/juntang-zhuang/acprop-optimizer提供实现。
translated by 谷歌翻译